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K 
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coefficients of velocity distribution function for ith species 

distribution function coefficients given in appendix A and 
defined in reference 7 for i th species 

speed of sound, 

distribution function coefficients defined by equation (70c) or 

mass fraction of species i 
frozen specific heat at constant pressure of mixture, 

(D10) 

cys c icp , i  

specific heat at constant pressure of species i 
frozen specific heat at constant volume 

multicomponent diffusion coefficient for species pair i and j 

thermal diffusion coefficient 

binary diffusion coefficient for mixture of atoms and 
molecules 

binary diffusion coefficient for mixture of species i and j 

diffusion vector of j t h  species 

total energy flux, ET + eM 

energy flux from translational energy 

internal energy that readily equilibrates with translational 
energy 

general flux of property such as mass, momentum, or energy 

diffusion coefficient, pDAM/p(u&/cp,oo)  

distribution function of ith species 

equilibrium (or Maxwellian) distribution function of ith 
species 
enthalpy of mixture, NS Cihi  

T 
enthalpy of species i, s cp,idT + Ah$&.. 

298 

heat of formation for species i at 298'K 

thermal conductivity of mixture 

Boltzmann constant 

wall catalytic recombination rate constant for species i 
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Pi 
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R* 

S* 

T 

urn 
U 

V 

V; 

mass flux 

Mach number, Uoo/aal 
mass of ith species 

mass of mixture or single-species gas molecule, 

binary Lewis number, c p p D ~ ~ / K  

multicomponent Lewis number, cppDij/K 

binary Lewis number, eppDij/K 

Prandtl number, c p p / K  

number of chemical species 

number density of species i 
coordinate measured normal to body in body-filled coordinate 
system (appendixes C and D) 
total number density, NS ni 

momentum flux 

-1 NS +) (3. 

pressure 

partial pressure of species i 
wall heat-transfer rate or wall heat flux 
universal gas constant divided by molecular weight of mix- 
ture, R,E 
universal gas constant 

radius measured from axis of symmetry to point on body 
surface 

radial distance from body center (appendix E) 
body nose radius of curvature (appendix D) or radius of 
sphere (appendix E) 

distance measured along body surface (appendix D) 

temperature 

free-stream velocity 

velocity component along body surface (appendixes C and D) 

thermal velocity vector 

thermal (or peculiar) velocity of ith species (component of V 
for species i) 

diffusion velocity 

total (or molecular) velocity, Uok + V' 
bulk or mass-averaged velocity 
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Subscripts: 

A 
e 

IC, e 
M 

4 
ref 

2,  Y, 
Y 

ILX,  

nondimensional thermal velocity, (a) V i  

molecular (or atomic) weight of species i 

molecular weight of mixture 

nondimensional mass-averaged velocity (@) VOk 

coordinate parallel to body (fig. 1) 

coordinate perpendicular to body (fig. 1) 

coordinate parallel to body (fig. 1) 

energy accommodation coefficient 

body angle defined in figure D1 
recombination coefficient (or, fraction of incident atoms that 
recombine at surface) 

ratio of frozen specific heats, cp/cv 

Kronecker delta 

Reynolds number parameter, (pre,/pooUoor~)1/2 
accommodation coefficient (or fraction of incident particles 
that stick) 

surface curvature 

mean free path 

viscosity of mixture 

density 

perturbation part of distribution function 

circumferential angle (appendixes D and E) 

general property of ith species such as mass, momentum, and 
energy 

source term defined by equation (38) 

atom 

equilibrium value 

coordinate indices 

molecule 

species index 

reference quantity 

component directions 

normal component 

tangential components 
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00 free-stream value 
Superscripts: 

1 incident flux 

T specularly reflected flux 
Affixes (used both as subscripts and superscripts): 

i, j species indices 

9 edge of Knudsen layer 

W wall 

A bar over a symbol indicates a dimensionless quantity except for the definitions of %% and e. 
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Summary 
Equations are presented for the surface-slip (or jump) values of species concentration, pressure, 

velocity, and temperature in the low Reynolds number, high-altitude flight regime of a space vehicle. 
These are obtained from closed-form solutions of the mass, momentum, and energy flux equations by 
using the Chapman-Enskog velocity distribution function. This function represents a solution of the 
Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium 
multicomponent airflow, includes the finite-rate surface catalytic recombination and changes in the 
internal energy during reflection from the surface. Expressions for the various slip quantities have 
been obtained in a form which can readily be employed in flow-field computations. A consistent set of 
equations is provided for multicomponent and binary mixtures and single-species gas. An expression 
is also provided for the finite-rate species-concentration boundary condition for a multicomponent 
mixture in the absence of slip. 

Introduction 
For an accurate prediction of the aerothermal environment of a space vehicle entering the Earth’s 

atmosphere in the low Reynolds number, high-altitude flight regime (ref. l), the multicomponent, 
nonequilibrium gas chemistry, as well as the wall slip and catalysis effects, must be evaluated. Such 
flow fields are of particular interest for aeroassisted orbital transfer and Space Shuttle vehicles. 
This study was undertaken to obtain the boundary relations that incorporate the effects of slip, 
multicomponent diffusion, wall catalyticity, and changes in internal energy of the molecules (during 
reflection from the surface) for application to flow-field calculations under the general assumption of 
local thermodynamic equilibrium. 

Scott (ref. 2) first presented the wall boundary conditions for a multicomponent mixture with 
diffusion and wall-catalyzed atom recombination. In obtaining these boundary conditions, he used a 
first-order velocity distribution function at the edge of the Knudsen layer next to the wall (see fig. l), 
where the continuum model of the gas breaks down. These boundary conditions, obtained from the 
kinetic theory considerations, provide solutions at the top of the Knudsen layer that would match 
the solution of the Navier-Stokes equations in the bulk outer flow. Hendricks (ref. 3), using Scott’s 
formulation, obtained simplified expressions for engineering applications with some corrections to 
Scott’s expressions. Hendricks’ analysis, however, contained some errors in obtaining the engineering 
expressions. This paper reanalyzes the wall boundary equations by using the approach of reference 2 
and provides appropriate relations for the various quantities with surface slip in a form which can 
readily be employed for flow-field computations. An effort has also been made to reconcile the 
differences between slip expressions employed by the different researchers. The present analysis 
provides a consistent formulation for the slip equations for multicomponent and binary mixtures and 
single-species gas. An expression is also provided for the finite-rate species-concentration boundary 
condition for a multicomponent mixture (in addition to that for a binary mixture) in the absence 
of slip. This expression could readily be used in Shuttle-flow-field heating analyses, which include 
effects of multicomponent diffusion such as reference 4. 

The main difference (among other details) between the results contained in reference 5 and the 
present work is that, in reference 5, the various internal degrees of freedom for a molecule were 
considered frozen during reflection from the surface whereas they were allowed to change in the 
present ana1ysis.l Further, the results are provided in both spherical and body-oriented coordinate 
systems. 

Analysis 
The slip conditions are taken to exist across the Knudsen layer, which is on the order of one mean 

free path in thickness as sketched in figure 1. The analysis outlined herein follows the approach of 

Since the assumption of local thermodynamic equilibrium is employed, only those internal energies are considered 
which equilibrate readily with the translational energy. 



Continuum region (main flow) 

F;T F; 
s---- -- 

Knudsen layer 
(order of 1 mean 
free path) 

W, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

F! incident flux; F,f specularly reflected flux; FY diffusely reflected flux. 

Figure 1. Knudsen layer showing general fluxes and coordinate axes; temperature as function of normal distance is 
schematically averlayed. 

references 2 and 5. It is based on Shidlovskiy’s (ref. 6) assumption that the distribution function 
near the wall can be described to first-order accuracy by the so-called Navier-Stokes approximation. 
However, a deviation is made from the procedures of Shidlovskiy in that a Chapman-Enskog 
type distribution function for a multicomponent mixture obtained by the variational method of 
Hirschfelder, Curtiss, and Bird (ref. 7) is used. The Chapman-Enskog distribution function permits 
an accurate accounting of diffusion. The analysis contains the following assumptions: 

1. The energy and momentum accommodation coefficients (i.e., a and 8, respectively) have the same 

2. The fluxes of mass, momentum, and energy across the Knudsen layer are assumed constant. This 
assumption is consistent with the one of negligible variation of the velocity distribution function 
through the Knudsen layer. 

3. The internal energy associated with the rotational and vibrational modes readily equilibrates with 
translational energy. 

value. 

The interaction model at the gas-solid interface, with the various fluxes sketched in figure 1, can 
be mathematically stated for dissociated air as provided by the following equations.2 

From the available experimental information, there is no indication that there is significant formation of NO on the 
Shuttle or other thermal protection surfaces. For this reason, the formation of NO has been neglected in the present 
model. 
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For recombining atom: 

FA = FA I + (1 - OA)FA t + ( 6 ~  - " I A ) F ~  (A = 0, N) 

0 bviously, 

For molecule gaining from corresponding atom recombination: 
7 A  5 8A 

For all other atoms and molecules (surface is assumed to be noncatalytic with respect to them): 

I Fi = Fi + (1 - 13i)F: + eiFY (3) 

where Fi denotes a convective property such as mass, momentum, or energy. 

the net flux of momentum or energy: 
Summing over all the species gives, from equations (l), (2), and (3), the following expression for 

NS NS NS NS E F~ = F: + ~ ( i  - ei)p; + e i ~ ~  
i= 1 i=l i= 1 i= 1 

(4) 

That is, the net flux at the outer edge of the Knudsen layer equals the incident flux, plus the specularly 
reflected flux (incident minus the fraction that sticks) at the wall, plus the diffusely reflected flux 
(those that accommodate to the wall) from the wall. 

Each species is treated separately in the mass balance equations. Therefore, equation (l), (2), or 
(3) is employed, depending on the species being considered. In equation (l), the diffusely reflected 
flux consists of those atoms that are accommodated to the wall minus those that recombine. For the 
molecules in equation (2), the diffusely reflected term is present along with the source term resulting 
from the appropriate atoms recombining on the surface. 

Various Fluxes and Distribution Functions 
The interaction model of equations (1) through (4) is employed to obtain the slip boundary 

equations at the gas-solid interface. Through equation (I), the net fluxes of species, momentum, and 
energy at the outer edge of the Knudsen layer are equated to the difference between the incident 
and reflected fluxes at the wall. These fluxes are assumed to be constant across the Knudsen layer 
and are obtained from moments of the distribution function. For a convected property &V) such 
as mass, momentum, or energy for the ith species, the net flux of that property normal to the wall 
at the outer edge of the Knudsen layer, for example, is 

where vf is the normal component of the molecular (or total) velocity and fi(V) is the velocity 
distribution function at the edge of the Knudsen layer. 

Similar integrals are obtained for the incident and reflected fluxes by integrations over appropriate 
half-spaces in molecular velocity as shown through the following equations: 

Incident flux: 
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Specularly reflected flux: 

Diffusely reflected flux: 

FW z = s_”, km v$ @i(V) &(V) d3V 

where j’h is the Maxwellian velocity distribution function evaluated at the wall condition and V,, 
V,, and Vz are the components of the thermal velocity vector V .  It may be noted that the normal 
component of the macroscopic (or mass-averaged) velocity voy at the surface is zero, so that v& = Vi  
in equations (5) through (8). 

The velocity distribution functions used in integrals contained in relations (5) through (8) are 
those for a nonuniform multicomponent mixture perturbed out of equilibrium: 

where f(Oli(V) is the Maxwellian distribution function for the ith species given as 

and 

Here k and t are the dummy indices for three coordinate directions, and the summation with index 
j represents summation over all the species. The summation convention for repeated indices is used. 
The coefficients A;, Bfe ,  and Ci(’) are functions of the dimensionless velocity: 

and are defined as 

where aiO, ail ,  bi0, and c$) are constants determined from the variational problem in the first 
approximation for a mixture as given in reference 7 ,  and &e is the Kronecker delta such that 



Sk, = 0 @ # e )  
These constants are functions of the collision integrals and are related to the transport properties. 
The simplified form of these constants is provided in appendix A of this paper. More details can 
be found in appendix A of reference 2 or in reference 7 .  The diffusion vector d{ in equation (11) is 
related to the diffusion velocity of the j t h  species and is defined after neglecting the external forces 
as (ref. 7): 

where nj and mj are, respectively, the number density and mass of the j t h  species; E is the total 
number density, Z = xj nj; p is the total mass density, p = '& njmj; and p is the total pressure, 

p = cj p j .  A Simplified form for d{ is provided in appendix A. 
The total or mass-averaged velocity wok (i.e., the kth component) appearing in equation (11) is 

defined as 

' j=l 

where .{ is the total velocity w{ (= V O ~  + V i )  of the j t h  species averaged over the distribution 

function, and V l  is the thermal (or peculiar) velocity, also introduced in equation (5). The thermal 

velocity V l  of the j t h  species averaged over the distribution function is known as the diffusion velocity 
- 
V i :  

A simplified expression for the diffusion velocity in terms of transport properties is provided in 
appendix A. 

Balance and Slip Equations 
Based on equations (1) through (4), the balance equations for the ith species for fluxes normal 

to the surface of (i) the species mass Miy, (ii) the normal component of momentum Piy, (iii) the 
tangential component of momentum Pill, and (iw) the energy Eiy are obtained as follows: 

(i) Species mass flux: 

For a recombining atom, 

 MA^ = 6 ~ M f i  4- ( 6 ~  - ' y ~ ) n / r A "  ( A  2= 0, N) 

For a molecule gaining from the corresponding atom recombination, 

M M ~  = 6 ~ M b  + 6 ~ M g  + ~ A M X  ( M  0 2 ,  N2) 

For all other atoms and molecules, 



(ii) Normal momentum flux: 

NS NS , NS 

(iii) Tangential momentum flux: 
NS NS 

2=1  2=1 

(iv) Energy flux:3 

NS NS 
Ey = Eiy = E$ + eiyMiy 

i=l 2=1  i 
Diatomic 
molecules 

i=l i=l i 
Diatomic 
molecules 

i 
Diatomic 
molecules 

where ei is the internal energy of ith species that readily equilibrates with the translational energy 
ET under the assumption of local thermodynamic equilibrium. For example, 

kT 
mi 

eFotation = - 
2 

Further, in writing the energy flux balance of equation (23) it has been assumed that there is no 
change in internal energy during specular reflection. 

In obtaining equations (18) through (23) we have used the following relations: 

Because it is assumed that the atoms are consumed at the wall by catalytic recombination in 
equation (18), the net mass flux is not equal to zero,  MA^ # 0. Similarly, the net mass flux is 
not equal to zero, M M ~  # 0, in equation (19). However, Miy = 0, is equal to zero, in equation (20) 
for the atoms and molecules for whom the surface is assumed noncatalytic. 

Substituting equations (5), (6), (7), and (8) with the definition of &V) as mass for equations (18) 
through (20), as normal component of momentum for equation (21), as tangential component of 
momentum for equation (22), and as energy for equation (23), respectively, and carrying out the 

The energy balance is based on the assumption that the various energies considered readily equilibrate with the 
translational energy. 
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integrations4 gives equations relating the slip properties to wall properties and gradients at the edge 
of Knudsen layer. All accommodation coefficients ei are assumed to be equal to 8. 

Concentration (number density) slip (obtained from mass flux balance): 

where Miy and Piy/pZ are given by equations (Bl) and (B17), respectively. Alternatively, a more 
simplified expression for Miy may be obtained from equations (34) and (35). 

Pressure slip (obtained from the flux balance of normal component of momentum): 

with viscosity 
NS 

i=l 

1 
2 

p = -kT nibio 

Velocity slip (obtained from the flux balance of tangential component of momentum): 

1 

2 = 1  

NS NS 

j=1 S 2=1  

- E  e!) d i ]  }/E pi"/= 2 kTs 

1 

2=1 

The mass, momentum, and energy fluxes in terms of evaluated integrals over the distribution function are given in 
appendix B. 
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Temperature slip: 

Equations (24) through (28) differ from the corresponding expressions provided in reference 2 be- 
cause of the differences in the interaction model employed at the gas-solid interface and typographical 
errors. 

The constants aio, ail, bio, and c$) (also known as the Sonine expansion coefEicients) appearing 
in equations (24) through (28) may now be expressed in terms of the transport properties as given in 
appendix A. By using these relations along with the various flux expressions of appendix B and also 
expressing d i  in terms of the gradient of mass fractions aCj/ay as given in appendix A (by neglecting 
diffusion due to pressure gradients and external forces), the following equations are obtained after 
some algebraic  simplification^:^ 
Concentration (number density) slip: 

Please note that the following equation is the same as equation (24) and is unchanged: 

Pressure slip: 

Velocity Slip: 

The approximations made in the expressions for ail and bio are given in appendix A. 
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Temperature slip: 

- 

+- 4 
Diatomic 
molecules 

where the mass fraction Ci and the mass of a mixture molecule E are defined, respectively, as 

and 

-1 

"= (p) 
J=1 

Equations (24), (29), (30), (31), and (32) differ from equations (23) and (25) through (28) of 
reference 3. For dissociated air, the gas-surface interaction model employed in reference 3 appears 
to be inconsistent. Further, the diffusion vector d{ appears to have been incorrectly evaluated in 
reference 3. If one carries out the simplifications in equations (23), (24), and (28) of reference 3 
(which contain the binary assumption) through the evaluation of a 2 in terms of mass fraction 
as given by equations (35), (36), and (39) of the same reference, erroneous results are obviously 

% 0 
obtained because (which is zero by definition) is contained as a factor in several of 

i=1 
these equations. 
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For the first-order recombination at the surface, the following relation between the atom mass 
flux  MA^ and the wall number density nx may be employed: 

where the minus sign indicates that the flux is in the direction opposite to the outward normal, and 
the expression for the rate constant k,A with diffusion and slip is (ref. 2)6 as follows: 

Here Y A  is the recombination coefficient. 
For a fully catalytic wall (YA = l), the maximum value of the rate constant k , ~  is limited by 

the surface temperature. The reaction rate constant for a fully catalytic wall with the gas phase in 
chemical equilibrium is often assumed to be infinity for the sake of simplicity. 

If equation (33) is employed, the net mass flux Miy appearing in equations (24) and (32) may be 
obtained from 

( A = O ,  N) 
A = 0 for M = 0 2  

A = N for M = N2 

M .  = o  (For all other atoms and molecules) 
2Y 

Equation (24), with Miy defined by equations (35), gives the number density ratio nf/ny. However, 
to obtain ny from this ratio, an expression for nf is required. 

The net mass flux of 0 and N atoms to the surface,  MA^, is also equal to the rate of consumption 
of these atoms at the wall from surface recombination: 

and the corresponding net mass flux of 0 2  and N2 molecules will be 

A = 0 for M = 0 2  ( A = N for M = N2 MMy=-'YAMfiy 

For all other species, the net mass flux to the surface may be assumed to be zero. Thus, 

As shown in reference 2 ,  by neglecting slip but keeping diffusion, a slightly different form of equation (34) is obtained: 

10 



1 Substitution of the net and incident fluxes Miy and Mi from equations (Bl) and (B2) ,  respectively, 
into equation (36) gives the following expression (after thermal diffusion is neglected): 

j # i  

which may be used to obtain ni”.7 Here @’ is the source term defined as 

For 0 2  and N2 molecules 

For all other species 
‘9  = 0 

2 

(37) 

Simplifications for Multicomponent Mixture 
Equations (24) and (29) through (32) for multicomponent gas flows can be simplified if one makes 

the following assumptions: 
1. All diffusion coefficients D. . for a multicomponent gas have the same value so that Dij =  DAM;^ ?J DAM is the same as the binary diffusion coefficient DAM.  

If no assumption is made about Dij ,  equation (37) would give the following expression for (aC,/ay) ,  for all the 
species: 

NS NS - NS 

(”) =z ~ = D ~ 3  ( % - C 3 x - - ) s - $ ]  mq ?E acq aY / x ( D Z 3 C J ) s  3 = 1  
3 = 1  q=l 
3 2 %  q f z  3 #i 

a y  ms 

The source term $% in this expression, however, may be simplified to yield the following expression for C i  (or n2) for 
the recombining atoms only: 

This is a somewhat stronger assumption because D .  . is concentration dependent, whereas Di3 is virtually independent 
of composition. The multicomponent diffusion coefficient D,, is related to the binary diffusion coefficient Dzj through 
the following relations (ref. 7): 

2.3 

D, = K,j - (M, /M3)Ki i  

where quantities xij are coefficients in a matrix which is the inverse of the matrix with the following coefficients: 
NS 

( 2  # j )  % 

= O  ( 2  = j )  

K . .  = 2 C .  + M .  
” Di3 ’ MqDiq 

q=l 
q#a 

One can see, therefore, that by employing DAM (which is the same as D A M )  for all the species in a multicomponent 
gas mixture, considerable saving is obtained in computational effort and time without losing the general flavor of 
multicomponent diffusion. This is particularly true if the dissociated air consists predominantly of nitrogen molecules 
and oxygen atoms. The Shuttle entry conditions fall into this category. Simple and multicomponent diffusion gave the 
same results in reference 8. 
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2. The ratio of normal momentum flux to the pressure Piy/pi is the same for all species and equal 
to that of the mixture; this also implies that the normal shear stress ~~~i for species i is the same 
as that for the mixture T ~ ~ .  

3. The rotational and vibrational states are fully excited so that the internal energy ei for the 
diatomic molecules in air may be taken as equal to 2kT/mi at the edge of Knudsen layer. Implicit 
here is the assumption that excitation of the electronic states of the atoms and molecules does 
not contribute to the internal energy of the particle. This will be true for a relatively cold surface. 

These assumptions retain the major effects of multicomponent fluxes on various slip quantities and 
provide considerable saving in the computational effort required for the analysis of a flow problem 
(refs. 2 and 8). With these simplifications, equations (24) and (29) through (32) yield the following 
results: 

where Mi2 may be obtained from equations (35) and Py/pS is given by equation (B17) with the 
simplifications mentioned earlier in this section. 

Pressure slip: 

Velocity slip: 

2=1 

(42) 
NS 

2=1 mq dz 
q=l 2=1 

dx 

12 



Temperature slip: 

-=  Ts [-- fi NS 
i= 1 Tu, n s  

Miy fi -- 
mi Tis mi mi 

Diatomic Diatomic 
molecules molecules 

i 

1 

i=l 
Diatomic 
molecules 

(434 

or, if the internal energy is frozen during reflection from the surface (see eq. (28) of ref. 5, for 
example), 

NS NS NS 

2 p dy 4 nmi 
i=l 

Tu, 

i=l 

Equation (37) may also be simplified to yield 

where 

an explicit expression for ni:  

( A  = 0, N )  (454 

A = 0 for M = 0 2  

A = N for M = N2 

= 0 (For all other species) (454 

It is suggested here that the concentration for the major species (for example, nitrogen) be 
obtained by requiring the sum of concentrations of all the species to equal unity. It should be 
mentioned that the mass of the ith species mi is related to the molecular (or atomic) weight Wi 
through the relation 

5- k - -  
Wi R 

where k is the Boltzmann constant and R is the universal gas constant. 

13 



Concentration Slip Boundary Condition for Fully Catalytic or Noncatalytic Surface 
Equation (44) gives slip values of the concentration nf for a finite catalytic surface. For a fully 

catalytic (YA = 1) surface, one generally assumes complete recombination of atoms at the surface. 
There is a discrepancy in this assumption because the maximum recombination rate is limited by 
the surface temperature as discussed earlier. (See the discussion following equation (34).) Thus, for 
a fully catalytic surface, equation (44) should be employed with Y A  = 1. 

For a noncatalytic surface ( T ~ A  = 0), equations (45) give $f = 0 for all the species. Then 
equation (44) becomes 

which may also be written as 

Summing the above equation over all the species gives 

NS z ac, 
q = l  c (m, dy), = O  

for a noncatalytic surface. Therefore, equation (47a) is not an appropriate boundary condition. 
However, employing equation (48) with equation (47b) yields 

( % ) , = O  (49) 

which may be used as the boundary condition for a noncatalytic surface with a multicomponent gas 
mixture. 

Simplifications for Binary Mixture 
At lower altitudes (i.e., when the Reynolds number parameter c2 of reference 9 is much less than 

1) with the flow in slight nonequilibrium, the derivatives of various quantities with respect to z and 
x and some other higher order terms like dvoy/ay may be dropped through an order of magnitude 
analysis. (See ref. 10, for example.) Further, the dissociated air may be considered as a binary 
mixture (Le., consisting of atoms and molecules only, see ref. 9) at these altitudes. If an assumption 
is also made that the internal energy of the molecules remains frozen during reflection from the 
surface, equations (39) through (44) can be simplified further to the following forms. 
Concentration slip: 

Pressure slip: 

14 



Velocity slip: 

Temperature slip: 

or, with frozen internal energy during surface reflection, 

In equations (54), n z  is obtained from n$ by using equation (50). 

Expression for n i :  

which may also be written as 



For a fully catalytic surface ( 7 ~  = l), equation (55b) gives appropriate value for the concentration 
slip.g The relevant boundary condition for a noncatalytic surface ( 7 A  = 0) is 

( % ) , = O  

as can readily be seen from equation (55b). 

Comparison With Existing Expressions 

further simplified, with the help of equation (56), to the following equations: 
For a noncatalytic surface ( 7 ~  = 0 ) ,  pressure and temperature slip equations (51) and (54b) are 

Pressure slip: 

Temperature slip (with frozen internal energy during reflection from the surface): 

Equations (52), (53), (57), and (58) (with the noncatalytic surface assumption in equations (57) and 
(58)) can be rewritten as 

Velocity slip: 

Pressure slip: 

Temperature slip: 

Sometimes in the literature CA is prescribed as zero for a fully catalytic surface. Strictly speaking, this is true only 
when the Reynolds number parameter (ref. 9) is approximately zero (close to the chemical equilibrium condition at 
low altitudes) and the surface is highly cooled. This can easily be seen by nondimensionalizing equation (55b) in a way 
similar to equation (2.8d) of reference 9. Thus, the recombination rate coefficient 7~ and density (as measured through 
E ~ )  both control the recombination rate and not 7~ alone. 
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where 

2 - e  
e = 1.2304- 

b l  = -F7 15 n 2  - e  = 1.1750- 2 - e  
16 2 e 

2 - 0  
-- = 2.3071- e c1 = - 

The concentration slip condition consistent with equations (591, (60), (61), and (62) is 

(%$)s = O  

The range of values of A i ,  B1, and C1 is as follows for a mixture of oxygen atoms and molecules and 
qs = 1.4 (ref. 9): 

1.0039 5 A1 5 1.0186 

0.9056 5 C1 5 0.9507 

The minimum values for A1 and C1 occur at nA = 0 . 5 p / m ~ ,  whereas the maximum value for B1 
occurs at this value of nA. 

Expressions (59), (61), and (62) reduce to those obtained in reference 9l0 if one assumes the 
values for A i ,  B1, and G1 to be unity and a noncatalytic surface boundary condition as given by 
equation (63). The concentration slip boundary condition provided in reference 9 is 

which is the same as equation (55b) obtained herein except for the additive term It is 
obvious that the temperature slip boundary condition of equation ( 2 . 8 ~ )  obtained in reference 9 is 

lo See appendix C for the dimensional form of the slip boundary conditions given in reference 9. 
l1 It appears that equation (2.8d) of reference 9 for the concentration slip has been formulated for the chemical 
equilibrium wall condition. Thus, when surface slip goes to zero, one obtains from equation (2.8d) the equilibrium value 
for the Concentration, Le., CA = which would be zero for the oxygen atoms for surface temperatures of 2000 K 
or less. For a highly cooled wall, the equilibrium catalytic wall condition can be approximated by a fully catalytic wall 
condition where the species concentrations are set equal to the cold gas equilibrium value. 
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valid, strictly speaking, for a noncatalytic surface only and is not consistent with the concentration 
slip boundary condition of equation (2.8d) (reproduced here as equation (64)) obtained for a finite 
catalytic wall. As a matter of fact, the velocity and temperature slip boundary conditions of 
reference 9 are similar to those of reference 10,l2 where these slip conditions are provided for a 
perfect gas (or single-species gas). 

The inconsistencies in the boundary conditions used in references 11 and 12 are similar to those 
of reference 10, namely, the pressure and temperature slip values are in error by the ratio of 
dimensionless thermal conductivity to the viscosity K/p. References 11 and 12 also employ the 
single-species formulation for obtaining the velocity, temperature, and pressure slip values, and the 
concentration slip expression in these references is the one obtained for a binary mixture (ref. 9). 
The coefficients appearing in the slip equations of reference 12 may be obtained by multiplying a l ,  
b l ,  and e1 (coefficients of ref. 9) given here by 16/5n-. The factor 16/5 is sometimes replaced by n-. 

Simplifications for Single-Species Gas 
Equations (39) through (42) and equation (43b) may be simplified for a single-species gas to the 

expressions obtained in reference 6. For single species, these simplified equations may be written as 
(with Y A  = 0 and MiY = 0 for a single-species gas). 

Density slip: 

Pressure slip: 

ax 

Velocity slip: 

Temperature slip:13 

l2 There appears to be some error with the form of equations (2.7~) and (2.7d) given in reference 10 if one employs 
the definition from equation (2.4b) of the same reference of dimensionless heat-transfer rate q in these equations. (The 
Reynolds number parameter is missing in eqs. (2.2b) and (2.4b) of the same reference for dimensionless shear stress 
and heat transfer, respectively. These have been corrected in ref. 9.) The resulting pressure and temperature slip 
expressions contain the dimensionless viscosity coefficient p rather than the dimensionless thermal conductivity K. 
References 11 and 12 contain same error. See equation (2.8~) of reference 9 for the "correct" form. 
l3 Since the temperature slip expression contained in reference 6 is for a gas consisting of perfectly elastic spherical 
molecules, the gas does not possess any internal degree of freedom. Therefore, we have obtained the temperature slip 
equation from equation (43b). 
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where we have used the following relations between the coefficients of viscosity and thermal 
conductivity and the mean free path for perfectly elastic spherical molecules (ref. 13): 

p = -ppXdrn 5 
16 

15 IC 
4 m  

K=-=p 

The expression for p given earlier, following equation (25), for a single-species mixture is modified to 

p = h k T b 0  
2 

Now, if an assumption is made that the slip values are small, equations for the density, pressure, and 
temperature slip are simplified to 

Density slip: 

Pressure slip: 

Temperature slip: 

or 
-=1+-- 2 - 0 7 5 ~  ( X a T ) s  -- -- 5 J" -~ As (8;: - +--2- avo2 T S  

T W  0 128 T ay 48 2 RTs az s 
(73b) 

In obtaining equation (73b) from equation (73a), we have used Py/ps M 1 in the second-order terms 
(Le., 2d and 3d terms on right side of eq. (73a)). Equations (67), (68), (72), and (73b) are the slip 
equations given in references 6 and 13. 

The no-slip boundary condition for the species concentration without any assumptions may be 
obtained from equations (44) and (45). In the absence of slip, the thickness of the Knudsen layer 
shrinks to zero and the values at the top of the Knudsen layer become the wall values (see fig. 1): 

l+q(%)w+&+)J/ m W (74) 
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with 

( A = O ,  N) 

A =  0 for A4 = 0 2  

A = N for M = N2 

(754 

$ i " = O  (For all other species) (754 

where we have neglected the higher order shear (i.e., Py/pw M 1). 
It is suggested here, again, that the concentration for the major species (for example, nitrogen) 

be obtained by requiring the sum of concentrations of all the species to equal unity. 
For the recombining 0 and N atoms, equation (74) may further be simplified to 

The recombination rate constant k w ~  in equation (76) has been defined as (ref. 2) 

without slip and higher order shear. 
For a noncatalytic wall (with = 0), equation (49) gives 

(Z), = o  

for all the species of a multicomponent mixture. 

Binary Mixture 
For a two-species mixture of atoms and molecules, equation (55b) gives 

for a surface with finite catalyticity and 

( % ) w = O  

for a noncatalytic surface. Equations (79) and (80) are used in reference 4. 
Appendixes D and E give the slip and no-slip boundary conditions (presented in the text earlier), in 

the dimensionless form for the body-fitted and spherical polar coordinates, respectively, for a planar 
flow. The various integrals employed for evaluation of the net, incident, and specularly reflected 
fluxes defined by equations (5), (6), and (7), respectively, are given in appendix F. 
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Discussion 
The present analysis provides a consistent formulation for the slip equations for multicomponent 

and binary mixtures and single-species gas reacting catalytically on the surface. The differences 
between the slip expressions obtained by various researchers have been reconciled, and the implication 
of various assumptions (some of them inconsistent) contained in those expressions is discussed. The 
slip equations have also been obtained in body-fitted and spherical polar coordinates in a form which 
can readily be employed in the flow-field calculations. 

Usually, the equation for pressure slip is not required as a boundary condition but is needed to 
obtain the surface pressure. The temperature slip equation given herein is for a constant surface 
temperature, which is provided as a boundary condition. For an adiabatic surface, however, the slip 
temperature Ts may be obtained by equating the wall heat-transfer rate to zero; that is 

where the expression for mass flux Ji  is provided in appendix B and the higher order terms have 
been dropped. The temperature slip equation is now required to obtain the wall temperature Tw. 

An expression has also been obtained for the finite-rate species-concentration boundary condition 
for a multicomponent gas mixture without surface slip. This boundary condition in the literature 
(ref. 4) has generally been specified by assuming the dissociated air to be a binary mixture. However, 
the binary mixture formulation does not provide boundary conditions for the recombined molecules 
(on the surface) such as 0 2  and N2 in a multicomponent mixture; it gives boundary conditions only 
for the recombining atoms. 

To assess the importance of various terms in the general boundary conditions suggested herein, 
a study is being undertaken in which the flow properties and boundary conditions would be varied 
systematically. The boundary equations form a simultaneous set, which is being coupled with a 
flow-field calculation procedure in the stagnation region. These equations would finally be coupled 
with the viscous shock-layer code developed by Moss (ref. 14) for the detailed flow-field calculations. 
The boundary equations obtained in the present work should provide a more realistic set of boundary 
conditions for a multicomponent mixture for low Reynolds number slip flows as well as no-slip flows. 

Concluding Remarks 
The boundary slip expressions obtained in this paper are closed-form solutions of the mass, 

momentum, and energy flux equations by using the Chapman-Enskog velocity distribution function. 
This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. 
The analysis, obtained for nonequilibrium multicomponent airflow, includes the finite-rate surface 
catalytic recombination and changes in the internal energy during reflection from the surface. 
Expressions for the various slip quantities have been obtained in a form which can readily be 
employed in flow-field computations. A consistent set of equations is provided for multicomponent 
and binary mixtures and single-species gas. An expression is also provided for the finite-rate species- 
concentration boundary condition for a multicomponent mixture in the absence of slip. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
May 17, 1985 
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Transport P r o ~ e r ~ ~ s  

ution Function and D sion Velocity in Terms of 

General Expressions for Sonine Expansion Coefficients 

The Sonine expansion coefficients aio, a i l ,  bi0, and e!$ appearing in the general velocity 
distribution function are found by a variational technique in which they are solutions to sets of 
simultaneous equations. References 2 and 7 provide the coefficients in terms of solutions to these 
sets of equations. These solutions are expressed in terms of the collision integrals ds"). Reference 7 
also provides the transport properties in terms of the Sonine expansion coefficients. Thus, in place 
of evaluating these coefficients in terms of the collision integrals, they may be expressed in terms of 
the transport properties. The various relations are 

23 

(i) For aio, 

(ii) For a i l ,  

(iii) For bi0, 

2=1 

(iv) For e$), in the distribution function used here, the Kernel Cy' - 6, (k) has associated Sonine 

polynomial coefficients e e !  Now C:.  2) = 0 (see ref. 7), then e$) e&i) and 

where DT( e), K ( t ) ,  p( [ ) ,  and Djj( e) are the multicomponent thermal diffusion coefficient, thermal 
conductivity, coefficient of viscosity, and the multicomponent diffusion coefficient, respectively. The 
argument is the number of terms used in the Sonine expansion. Except for DF, letting t = 1 

. When E = 1, however, coefficients DT vanish. Hence, gives quite good results for K ,  p, 
in order to get the coefficient of thermal iffusion, it is necessary to take at least two terms in the 
Sonine expansion (Le., J = 2). If the argument does not appear with a coefficient (except for aio), it 
is considered to have one term in the Sonine expansion. 

The diffusion velocity for ith species in terms of the transport coefficients is obtained as (see 
ref. 7) 

and D2 



where the diffusion vector d$ for the j t h  species is defined after neglecting the external forces as (see 
eq. (16)): 

n j  mj 
(A61 

Equation (A6) may be simplified to obtain 

Simplified Expressions for Coefficients ail  and bio 

Since ail  and bio cannot be obtained directly from equations (A2) and (A3), we introduce the 
following assumptions for the mixture thermal conductivity and viscosity, respectively, 

NS 
K M C ~ K ~  n 

i=l 

NS 
p x C F p i  ni 

i=l 

Equations (A8) and (A9) are approximate forms for the more exact formula of Wilke. (See ref. 15.) 
These equations imply that, 

(A91 

in Wilke's relation. This relation is approximately true for air 
Thus, with the help of equations (A2), (A3), (A8), and 

approximate expressions for ai l  and bio, respectively, 

For accurate evaluations of ail  and bi0, cumbersome expressions of the type of equation (7.4-49) of 
reference 7 are required to be solved. 
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Appendix B 

Evaluated Expressions for Fluxes of Mass, Momentum, and Energy From Integrals 
Over Velocity Distribution Function 

The fluxes of mass, momentum, and energy (Le., of a property q$(V)) are given in terms of 
integrals over the velocity distribution function fi(V) in the section “Analysis” of the main text. 
Here we give evaluated forms for these fluxes obtained from integration over the distribution functions. 
The various integrals needed in these evaluations are provided in appendix F. 

(i) Expressions for mass flux of species: 

Net 

Incident 

Specularly reflected 

Diffusely reflected 

M? = -M.  1 
a a 

It may be mentioned that Miy as obtained here is similar to the mass flux Ji expression of reference 16. 

(ii) Correlation with Blottner’s expression (ref. 16) for mass flux: 
If the thermal diffusion term is neglected in equation (Bl) and substitutions are made for ci0 ( j >  

and d i  from equations (A4) and (A7), equation (Bl) may be simplified to obtain14 

where Wi is the molecular (or atomic) weight of the ith species and is related to the mass of the ith 
species mi through the relation 

Here k is the Boltzmann constant and R is the universal gas constant. Equation (B5) may also be 
written as 

l4 It may be noted here that Dii = 0. See reference 7 for details. 
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or, with the introduction of the multicomponent Lewis number N ~ ~ , i j  defined as 

Equation (B7a) may be rewritten as 

or 

where 

r 

In general,15 
NLe,ij = NLe,ij(ci ,  M i , M j ,  NLe,ij) 

If the binary Lewis numbers N ~ ~ , i j  are assumed to be the same for all the species, then 

NLe,ij = Nie, i j  = N i e , i j ( c i ,  Mi,  M j )  

and equation (B8) for z b i j  becomes 

and the mass flux (eq. (B7e)) now becomes 

l5 See equations (7) and (8) of reference 16. 
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Further, if the binary Lewis numbers . A / ~ ~ , i j  are constant for all the species, the term 

is zero in equation (B10). Therefore, 

or 

Thus, equation (B10) gives the mass flux due to concentration gradients only with Ab*. and N L ~ , ~  
defined by equations (B9) and (Bllb), respectively. 

To utilize equations (B9) and (Bllb), Nze,ij is still to be evaluated through complex matrix 
inversions (ref. 16). If we now make a little stronger assumption such that Nzelij = NL~,AM = N L ~  
(same for all the species), we obtain a much simpler expression for Ab;, and equation (Bllb) becomes 

Y 

or 

(B12a) 

Similarly the expression for rb*. may be obtained from equation (B9) as 
23  

(B12b) 

It may be noted that for aci - 0, the term N L ~ , ~  dy aci in equation (B10) vanishes and equa- 
tion (Bllb) or (B12b) is not required. Further, employing a constant value for the Lewis number 
NLe ( = p  N p r D A M ) ,  p does not imply that N L ~ , ~  has a constant value. 

It should be pointed out here that for the case when N ~ ~ , i j  is the same for all the species, we 
have used the condition 

d y -  

- 
(and not just hbzfk = 0 as employed in ref. 16) to obtain equation (Bllb) for N L ~ , ~ .  The present 
formulation appears to provide a more consistent expression for N L ~ , ~ .  
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Finally, equations (BlO), (B12b), and (B13) for a binary (two-species) mixture give 

which is Fick's law for mass flux 
%e,i = N L ~  

_. - 
Ab?:. = O  

23 

(iii) Expressions for normal momentum flux: 

Net 

Piy = pi" [l +TiY] S 

where 

Incident and specularly reflected 

represents terms in the stress tensor for the ith species. 

Diffusely reflected 
1 

ay 2 
p. W =-pi" 

(iv) Expressions for tangential momentum flux: 

Net 

Incident and specularly reflected 

Piz = -ps i [$ (!?$ + 



Diffusely reflected 
Pg = Piz W -  - 0 

(v) Expressions for energy flux: 

Net 

(B25a) 
52kT8 mini 2kT E .  [ - (-)lI2 4- Mik] ( k  = 2, y, 2) 

mi axk S 
a k - 4  m.  

a 

(B25b) 

where 
niKi aT 

qik = - (T-) axk s 

Incident and specularly reflected 

Diffusely reflected 
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Appendix C 

Slip Boundary Conditions Given by Davis for Binary Mixture 
In this appendix, the dimensional form of the slip boundary conditions obtained by Davis (refs. 9 

and 10) is provided for the purpose of comparison with the slip expressions obtained in the main 
text for a binary mixture. 

The dimensionless form of the surface slip conditions provided in references 9 and 10 are 

Concentration slip (ref. 9):16 

Velocity slip (ref. 9): 

Pressure slip (ref. 

Temperature slip (ref. 9): 

With the help of the nondimensionalizing quantities given in references 9 and 10, the following 
dimensional forms of equations (Cl) through (C4) are obtained: 

Concentration slip: 

Velocity slip: 

Pressure slip: 

Temperature slip: 

P s = P w + b l ( y ) s / g ( K g )  S 

l6 Here the dimensionless quantities are denoted with a bar over the symbol. 
nondimensionalization and the coordinate system. 
l7 For the reasons explained in the main text, we have employed 

See appendiv D for details of 

in place of p in this expression. 
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where n* is the coordinate normal to the surface (see fig. Dl),  and Z and % axe the number density 
and mass of a mixture molecule, respectively. The constants a l ,  b l ,  and e1 are defined as 

a1 = 

bl  = 

c1 = 

2 - 6  = 1.2304- e 
2 - 6  = 1.1750- 6 

2 - 0  
= 2.3071- 

6 
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Appendix D 

Slip Conditions in Body-Oriented Coordinate System 
In this appendix, we obtain the slip conditions for an axisymmetric body in the body-oriented 

coordinate (s*, n*) system. The coordinate configuration for such a system is given in figure D1. The 
equations of this appendix contain simplifications similar to those given in the section “Simplifications 
for Multicomponent Mixture” in the main text. By employing the metric coefficients (ref. 17) of 
h l  = 1 + n*K: and h2 = 1, equations (39) through (45) give the following slip equations in the 
body-oriented coordinate system. 

s*, u 

Body axis 

Figure D1. Coordinate configuration €or body that is symmetric about its axis. 

Concentration slip: 
- nz = 2 (1 + ;$$$ E/ (2  + 1) 
ny 

where (from eqs. (35)) we define Miy as 

 MA^ = -k,AnzmA ( A = O ,  N) 
A = 0 for M = 0 2  

A = N for M = N2 

Miy = 0 (For all other atoms and molecules) 

Pressure slip: 

1 du 



Velocity slip: 

NS 

2 = 1  

1 1 aT 

Temperature slip: 

2 = 1  i TW 
Diatomic 
molecules 

Diatomic 
molecules 

NS 

2 = 1  

Miy 1 - x  
1 K  aT 5 
2 p  an* 4 F - G  x - 

i 
Diatomic 
molecules S 

If the internal energy (comprising rotational and vibrational energies in this case) is considered frozen 
during reflection from the surface, the following form of the temperature slip equation is obtained 
(see eq. ( 2 8 )  of ref. 5): 

Equation for ni: 

NS 1 acq 
n9 = {I + is [ ( z)s + + (&) ,1/ e ( K p )  1 

mi q=l  
2 
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where 

A = 0 for M = 0 2  

A = N for M = N2 

$9 2 = 0 (For all other species) (D8c) 

In equations (Dl), (D5), (D6), and (D8a), the ratio - PY is defined as 
PS 

1 du - 2  "")I 
dn* P S  

and bo is related to viscosity p through the relation 

1-1 = k k T b 0  2 (D10) 

which has been obtained from equation (A3) by assuming biO to be the same (bo) for all the species. 
Equations (Dl) through (D8) may now be nondimensionalized by using the following relations 

(refs. 9 and 14): 

E = lcrN 

where rN is the body nose radius of curvature, Tref = U & / c p , ~ ,  and pref = p(U&/cp,w). If 
the nondimensional quantities as defined here are used, the following equations are obtained from 
equations (Dl) through (D8): 

Concentration slip: 



where 

( A = O ,  N )  (D12a) -  MA^ = - k w ~  

A = 0 for M = 0 2  

A = N for M = N 2  
(D12b) 

- 
M i y  = 0 (For all other atoms and molecules) (D12c) 

where we have assumed that Npr  M Np,,i and 

Velocity slip: 
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Temperature slip: 

r 
x Q 2 = 1  (93/2c;+  t3 

i 
Diatomic 
molecules 

molecules 

312 c;+'(py+1) (33 /2c f }  x q g )  i= 1 2 PS 1. " -  
Diatomic 
molecules 

or, with frozen internal energy during reflection from surface, 

2 = 1  

Equation for nf: 
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where 

and 

( A = O ,  N) 

A = 0 for M = 0 2  

A = N for M = PJ2 

$? z = 0 (For all other species) 

mi R 
IC 

wi = - 

Reynolds number parameter: 
&2 =T: k e f  

P00uoorN 
Prandtl number: 

Lewis number: 

C P P  
K Npr = - 

Mach number: 
u0O Moo=- 
aoo 

Recombination rate constant: 

(D18a) 

(D18b) 

(D18c) 

(D19a) 

(D19b) 

For a noncatalytic surface (?A = ~ W A  = 0)) equations (D18) give qf = 0 for all species. For this 
case, equation (D17) becomes 

Equation (D20)) similar to equation (4%)) gives 

(2) = o  
S 

36 



which may be employed as the boundary condition for a noncatalytic surface with a multicomponent 
gas mixture (with the binary assumption for diffusion coefficients). For a fully catalytic surface, 
employing Y A  = 1 and using equations (D18) in equation (D17) would yield the appropriate 
concentration slip. 

If the multicomponent diffusion coefficients are retained without the binary assumption, the 
underlined terms in equation (D13) are to be replaced by 

r 1 

and the underlined terms in equation (D14) are to be replaced by 

where the multicomponent Lewis number N ~ ~ , i j  is defined as 

Simplifications for a Binary Mixture 

When all the species in a gas mixture can be considered as atoms and molecules only (ref. 9), 
equations (Dll)  through (D18) may be further simplified. With the assumption of Pg/ps M 1, 
equations (Dll) through (D18) for a binary mixture yield 

Concentration slip: 

Pressure slip: 

where we have used the following equation of state 

and neglected the higher order shear terms as well as diffusion terms. 
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Velocity slip: 

(D25) 

where we have again employed the equation of state (eq. (D24)) and neglected higher order shear, 
conduction, and difision terms. In obtaining equation (D25), we have also used the following 
approximation: 

For the equation to be more exact, one may keep this factor in equation (D25). 

Temperature slip: 

where 

and 
we have employed the equation of state (eq. (D24)) and W, = 2wA. 

becomes 

5 x1 5 1 for 0 5 CA 5 1 and diatomic molecules (WM = 2wA). In obtaining equation (D26), 

With frozen internal energy during reflection from the surface, the temperature slip equation 

where 

For diatomic molecules (W, = 2wA), x2 may be taken as unity for 0 5 CA 5 1. Equation (D27) 
employs W, = 2wA. 

Equation for Ci :  

elE7- 2 - 7 A  E2 ( N L e )  - ( E )  /F (az)  (D28) 
2 b~ NPr s P s TsT-ef  S 
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Equation (D28), for a noncatalytic surface with 3j1 = k w ~  = 0, gives 

( $ $ ) s = O  

whereas using Y A  = 1 in equation (D28) and in the expression for E w ~ ,  

would yield the appropriate concentration slip for a fully catalytic surface. 

(D28) may be simplified to those obtained in reference 9 and employed in reference 12: 
With the following (somewhat inconsistent) assumptions, equations (D23), (D25), (D27), and 

(i) In pressure slip equation (D23), Np,  = 1 is employed along with approximations 

and 

(ii) In velocity slip 
weights 

equation (D25), the following assumption is made for the mixture molecular 

(iii) _In temperature slip equation (D27), an assumption is made that the surface is noncatalytic 
so that k , ~  = 0. In addition, Prandtl number Np,  is taken as unity, and it is assumed that 

15 
1 2 (L) 7-1 “-8 

(iv) No assumption is required in the concentration slip equation (D28). But it may not be 
appropriate to employ (ref. 12) this equation for all the species of a multicomponent mixture. This 
equation is applicable to concentration slip of recombining atoms only in a binary (two-species) 
mixture (ref. 9) of atoms and molecules. 

No equation has been obtained in reference 9 or 12 to correspond to equation (D22) to obtain 
wall values of the species concentration ((7,) from the values at the edge of the Knudsen layer (Ci). 

Slip Expressions For Single-Species Gas 
For a single-species gas (YA = 0) ,  the following slip expressions are obtained: 

Density slip: 

- _  
PW 

Pressure slip: 



Temperature slip (for a gas consisting of molecules only (i.e., diatomic perfect gas)): 

(D34a) 

where we have used x1 = f and assumed that the diatomic molecules possess full rotational as well 
as vibrational degrees of freedom at the edge of the Knudsen layer, implying qS = 9/7. Generally 
this would be true due to the high temperatures at the Knudsen layer edge. However, for perfect air, 
7w is generally taken as 7/5 with the excitation of only the rotational degree of freedom. For such 
an analysis, therefore, Ts would also be equal to 7/5. In this case (with only the rotational degree of 
freedom excited), equation (D34a) would be modified to 

(D34b) 

With frozen internal energy during reflection from the surface or for a monoatomic gas, we obtain 

where 7s = 7/5 for perfect air, and 7 s  = 5/3 for a monoatomic gas. Equations (D32), (D33), and 
(D35) are the ones employed in references 9 and 12 with Np, = 1. 

No-Slip Species Concentration Boundary Condition 

Multicomponent mixture. The no-slip boundary condition may be obtained from equations (D17) 
and (D18). In the absence of slip, the thickness of the Knudsen layer shrinks to almost zero, and the 
values at the top of the Knudsen layer become the wall values (see fig. 1): 

where 

A = 0 for M = 0 2  

A = N for M = N2 

(A=O, N) (D37a) 

A = 0 for M = 0 2  

A = N for M = N2 
?pi = 0 (For all other species) (D37c) 

and we have neglected the higher order shear (i.e., Py/pw x 1). 
For the recombining 0 and N atoms, equation (D17) may also be written as 
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The recombination rate constant k w ~  in equations (D37a) and (D38) has been defined as (ref. 2) 

without slip and higher order shear. 
For a noncatalytic wall (with TA = k w ~  = 0), equation (D21) gives 

(2) = o  
W 

for all the species of a multicomponent mixture with the binary assumption about the diffusion 
coefficients. 

Binary mixture. For a two-species mixture of atoms and molecules, equation (D28) gives 

W 

which may also be obtained from equation (D38) for a surface with finite catalyticity. In equa- 
tion (D41), i w ~  is again obtained from equation (D39). For a noncatalytic surface with k w ~  = 0, 
equation (D41) gives 

( % ) w = O  (D42) 

Equations (D41) and (D42) are obtained in reference 4. However, in reference 4, equation (D30) is 
employed in place of equation (D39) for obtaining the reaction rate constant k w ~ .  As obtained in 
reference 2, equation (D30) is more appropriate when slip and higher order shear are included in the 
flow-field analysis (e.g., under rarefied or low density conditions). 

If k , ~  is substituted from equation (D39) into equation (D41), we may also obtain 

where we have used the following equation of state: 

Equation (D43) compares with the corresponding equation of reference 9, if one keeps in mind 
that the diffusion coefficient E'' (of ref. 9) in the absence of slip is related to the present variables 
by the relation 

FE = pW (") 
NPr w 

It may be seen from equation (D41) or (D43) that the gradient ( a C ~ / a f i ) ~  is governed by the 
ratio k w ~ / ~ 2  or T A / E ~ .  For surfaces which are almost noncatalytic, this ratio would be of the order 
of 1 for large values of the Reynolds number parameter ( 1 / ~ ~ ) .  This would imply that ( a C ~ / a % ) ~  
is not necessarily zero for such a surface if iz2 = 0. In addition, equations (D41) and (D43) also imply 
that regardless of the surface catalytic activity, the higher density conditions (smaller values of iz2) 
would promote larger values of the concentration gradient at the surface. 
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Appendix E 

Slip Conditions in Spherical Coordinate System 
For analyzing the flow in the stagnation region of a body, it is convenient to use the spherical 

polar coordinates ( r ,4)  for the two-dimensional flow. (See fig. El.) The following relations exist 
between the spherical polar and the body-oriented (s*, n*) coordinates over the spherical portion of 
a body: 

1 rsin 4 = R* + n* cosp 
* r = rN + n = rN(l+ n*lc) 

or, in the nondimensional form, 

I 4 = s  
a'i; = afi 

I34 = as 

where we have used nose radius TN to nondimensionalize all the distances. (See appendix D.) 

Figure El. Spherical coordinate configuration. 
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By using the relations given by equation (E2) in equations (D11) through (D19), we can obtain 
the slip equations in the spherical polar coordinates for a multicomponent mixture. Once again, 
these equations employ the simplifications given in the section “Simplifications for Multicomponent 
Mixture” in the main test. 

Concentration slip: 

where 

S A y  = -EwA ( A = O ,  N) 

=My = lcwA (z) ) 
A = 0 for M = 0 2  

A = N for M = N2 

= 0 (For all other atoms and molecules) 

Pressure slip: 

i is = { iiw - E2 [ ; P  (?@ 1 da - 2g)] 

S 

Velocity slip: 
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Temperature slip: 

- - 

2=1 i T W  

Diatomic 
molecules 

i 
Diatomic 
molecules 

- -  
Diatomic 
molecules 

molecules 

or, with frozen internal energy during reflection from surface, 
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where 

( A = O ,  N) (ElOa) 

(ElOb) 
A = 0 for M = 0 2  

A = N for M = N2 

$? z = 0 (For all other species) (ElOc) 

and 

In obtaining these various equations, the following form of the equation of state has been employed: 

Similar to Appendix D, equations (E3) through (Ell)  may further be simplified for a binary 
mixture and for a single-species gas. 
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Appendix F 

Integrals Required for Obtaining Various Fluxes 
In order to obtain the normal fluxes of mass, momentum, and energy, it is necessary to evaluate 

various integrals over the velocity space of the distribution function. These integrals involve terms 
that are various velocity moments of the distribution function. The integrals are provided for the 
net, incident, and specularly reflected fluxes. These integrals are basically the same as those provided 
in reference 2 except for some corrections and additions. 

Integrals Over Entire Velocity Space (for Net Quantities) 
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Integrals Over Lower Half of Velocity Space (for Incident Quantities) 

1 
4 

- - -,312 

exp(-w2) d3w = -lr 

exp(-w2> d3w = o 

exp(-w2) d3w = o 

exp(-w2) d3w = o 

3 - -_  
21r 

- 

W,W~W‘ exp(-w 2 3  d w = o L:S_”,L: 
35 
16 

= __,312 
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Integrals Over Upper Half of Velocity Space (for Specularly Reflected Quantities) 
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The term (--IVY) appearing in the integrals emphasizes that the sign of the thermal velocity 
component normal to the surface V, (and consequently that of W,) changes in the distribu- 
tion function fs upon reflection from the surface. This implies that the distribution function I 
f:~vz,v,,vz) = f,l(Vz,-V,,Vz). 
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